

Effect of anthropogenic invasion pressure on invasive plant distribution in urban forests

Amy Davis, PhD

Department of Geography & Earth Sciences, UNC Charlotte

Current affiliation:

U.S. Environmental Protection Agency, Durham, NC

Exotic shrub invasions

- Prevalent along the eastern seaboard
- Threaten biodiversity
- Inhibit forest regeneration
- form dense thickets
 - displace native species
 - local extinctions
 - impaired provisioning of ecosystem services

Species Distribution Models (SDMs):

Field records and maps of environment

Map of probability species is present

- Habitat suitability used to predict likelihood of presence
- More accurate for narrow habitat requirements
- Little data on effects of anthropogenic invasion pressure, yet residences likely use invasive species

Anthropogenic invasion pressure

- Introduction effort
- Worst forest invaders have their origins in the nursery trade
- Spread from homes via birds and wildlife to forests

Mahonia planted near a house (left), Mahonia growing in a nearby forest (right)

Research Question

1) Does anthropogenic invasion pressure influence the distribution of forest invaders in urban landscapes?

Collected presence/absence data on Chinese

Model Building

- Divide data 70/30 for training/testing
- Constructed niche (environment-only) models investigating :
 - Light availability (canopy closure, solar radiation, aspect)
 - Moisture (TMI, soil wetness capacity, relative slope position)
 - Edaphic factors (soil class, geology)
 - Landscape structure (patch area, edge, perimeter to area ratio, distance to forest edge)
- Best niche model:
 - Privet = solar radiation + canopy closure + relative slope position
- Evaluate contribution of rFOI to model accuracy, while accounting for neighborhood effects

Anthropogenic invasion pressure:

measured as residential force of invasion (rFOI)

$$\text{rFOI}_{i} = \sum_{k=1}^{\infty} \frac{1}{d_{ik}} w_{k}$$

 $i = 30 \text{m}^2 \text{ forest grid cell}$ $\mathbf{W} = \text{age of residence}$ $\mathbf{D}_{ik} = \text{euclidean distance between } \mathbf{i} \text{ and } \mathbf{k}$

Residential force of invasion map

Results

model	AIC	ОМ	COM	ACC	AUC
niche	320.00	0.29	0.30	0.70	0.80
niche + rFOI	293.45	0.15	0.20	0.82	0.91
niche +nFOI	284.97	0.24	0.24	0.76	0.87
niche + rFOI + nFOI	271.78	0.15	0.14	0.86	0.94
niche + housing density	294.59	0.18	0.19	0.82	0.89

observed

	present		absent	
ישונינים	present	<i>presence</i> (true positive)	commission (false positive)	
ם מו	absent	omission (false negative)	<i>absence</i> (true negative)	

OM Omission rate

COM Commission rate

ACC Overall accuracy

AUC Area under the curve

Binary Risk Maps

Niche model

Niche + rFOI + nFOI

Significance

- Model results show that accounting for rFOI and neighborhood effects not improves detection of privet, but eliminates a vast swath land previously identified as high risk of invasion
- Failure to account for rFOI and neighborhood effects in SDMs can lead to both underprediction (false negative) and overprediction (false positive).
- Conservation/control efforts can be more accurately and feasibly targeted.

Acknowledgements

- Field data was collected with the assistance of numerous individuals including: Jon Watkins, Emily Henke, Kent Davis, Tara Weller, Gloria Erikson, Emily Holland and Monica Dorning
- Funding was provided by UNC Charlotte GASP Fellowship, RENCI, North Carolina Association of Environmental Professionals (NCAEP)
- Supplementary data and assistance was provided by the Mecklenburg County Dept. of Natural Resources and the Catawba Lands Conservancy

Please send questions and comments to: davis.amy@epa.gov